The first experimental determination of the second-forbidden transition between the ground states of 20 F and 20 Ne

Marjut Hukkanen,^{1,2} O. S. Kirsebom,³ and I230 collaboration

¹Department of Physics, University of Jyväskylä, Finland

²Centre d'Etudes Nucléaires de Bordeaux Gradignan, Université de Bordeaux, France
³Department of Physics and Astronomy, Aarhus University, Denmark

The final evolution of 8 - 10 M_{\odot} stars depends sensitively on the electron capture rates in the ONe core. In particular, electron captures on ²⁰Ne, dominated by the second-forbidden, non-unique transition to the ground state of ²⁰F, have been shown to play a key role [1, 2]. The strength of the transition can be determined from the branching ratio of its inverse transition, the ground state to ground state β -decay of ²⁰F. We have determined this rare second-forbidden, non-unique transition for the first time at the IGISOL-4 facility in the JYFL Accelerator Laboratory.

²⁰F was produced via ¹⁹F(d, p)²⁰F reactions using a 6 MeV deuteron beam on a BaF₂ target. The produced ²⁰F⁺ ions were implanted on a thin carbon foil at the experimental setup which consisted of a refurbished Siegbahn-Slätis type intermediateimage magnetic spectrometer, and a plastic scintillator for detecting the β particles for the branching ratio determination. The detector was divided into three parts: two inner detectors in a Δ E-E configuration surrounded by an outer detector for vetoing cosmic rays. The plastic scintillator was protected by a positron shield, and a LaBr₃ detector was used for measuring the 1.6 MeV γ -rays from the ²⁰F β -decay to the first excited state in ²⁰Ne. The deduced branching ratio of the second-forbidden transition was $0.99(25) \cdot 10^{-5}$ leading to log ft = 10.51(11). This is the strongest measured second-forbidden, non-unique transition so far. The impact on related stellar evolution models will be presented in another contribution in this conference.

[1] G. Martinez-Pinedo *et al.*, Phys. Rev. C **89**, 045806 (2014).

^[2] J. Schwab *et al.*, MNRAS **453**, 1910-1927 (2015).