# The first experimental determination of the second-forbidden transition between the ground states of ${ }^{20} \mathrm{~F}$ and ${ }^{20} \mathrm{Ne}$ 

Marjut Hukkanen, ${ }^{1,2}$ O. S. Kirsebom, ${ }^{3}$ and I230 collaboration<br>${ }^{1}$ Department of Physics, University of Jyväskylä, Finland<br>${ }^{2}$ Centre d'Etudes Nucléaires de Bordeaux Gradignan, Université de Bordeaux, France<br>${ }^{3}$ Department of Physics and Astronomy, Aarhus University, Denmark

The final evolution of $8-10 \mathrm{M}_{\odot}$ stars depends sensitively on the electron capture rates in the ONe core. In particular, electron captures on ${ }^{20} \mathrm{Ne}$, dominated by the second-forbidden, non-unique transition to the ground state of ${ }^{20} \mathrm{~F}$, have been shown to play a key role $[1,2]$. The strength of the transition can be determined from the branching ratio of its inverse transition, the ground state to ground state $\beta$-decay of ${ }^{20} \mathrm{~F}$. We have determined this rare second-forbidden, non-unique transition for the first time at the IGISOL-4 facility in the JYFL Accelerator Laboratory.
${ }^{20} \mathrm{~F}$ was produced via ${ }^{19} \mathrm{~F}(d, p){ }^{20} \mathrm{~F}$ reactions using a 6 MeV deuteron beam on a $\mathrm{BaF}_{2}$ target. The produced ${ }^{20} \mathrm{~F}^{+}$ions were implanted on a thin carbon foil at the experimental setup which consisted of a refurbished Siegbahn-Slätis type intermediateimage magnetic spectrometer, and a plastic scintillator for detecting the $\beta$ particles for the branching ratio determination. The detector was divided into three parts: two inner detectors in a $\Delta \mathrm{E}$-E configuration surrounded by an outer detector for vetoing cosmic rays. The plastic scintillator was protected by a positron shield, and a $\mathrm{LaBr}_{3}$ detector was used for measuring the $1.6 \mathrm{MeV} \gamma$-rays from the ${ }^{20} \mathrm{~F} \beta$-decay to the first excited state in ${ }^{20} \mathrm{Ne}$. The deduced branching ratio of the second-forbidden transition was $0.99(25) \cdot 10^{-5}$ leading to $\log f t=10.51(11)$. This is the strongest measured second-forbidden, non-unique transition so far. The impact on related stellar evolution models will be presented in another contribution in this conference.
[1] G. Martinez-Pinedo et al., Phys. Rev. C 89, 045806 (2014).
[2] J. Schwab et al., MNRAS 453, 1910-1927 (2015).

